REALISING THE BENEFITS OF QUALITY FIBRE IN DIETS FOR SOWS AND PIGLETS

Megan Edwards
ACE Livestock Consulting Pty Ltd
Australia
megan@acelive.com.au
Fibre

- Forgotten nutritional aid
- Often over looked
- Poorly understood
 - Too much focus on ‘crude fibre’
- Poor image
 - Bulky
 - Not a major contributor to primary drivers of productivity (protein, energy, minerals)
 - Increased milling/transport costs
- Eubiotic lignocellulose as a fibre source
 - Great team player
 - Compact, consistent, clean
Fibre: multifunctional
OVERVIEW

- Gestation
 - Satiety
 - Behaviour
 - Reproduction
 - Gut health

- Pre-lactation
 - Gut health
 - Ease of farrowing

- Lactation
 - Hind-gut fermentation
 - Lactogenisis
 - Faecal consistency
 - Piglet well-being

- Weaner
 - Hind-gut fermentation
 - Gut health
TRENDS IN FIBRE

(Martineau et al., 2013)

2020 = 205g/kg NDF & 7.0% CF ???
2050 = 258g/kg NDF & 9.8% CF ???
FIBRE SOURCES

<table>
<thead>
<tr>
<th>Fibre source</th>
<th>Crude Fibre %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wheat bran</td>
<td>10</td>
</tr>
<tr>
<td>Rice bran</td>
<td>7</td>
</tr>
<tr>
<td>Soya bean hulls</td>
<td>36</td>
</tr>
<tr>
<td>Lupins</td>
<td>14.8</td>
</tr>
<tr>
<td>Peas</td>
<td>6</td>
</tr>
<tr>
<td>Barley</td>
<td>5</td>
</tr>
<tr>
<td>Canola</td>
<td>10.9</td>
</tr>
<tr>
<td>Millmix</td>
<td>9</td>
</tr>
<tr>
<td>Lucerne</td>
<td>28</td>
</tr>
<tr>
<td>Opticell</td>
<td>59</td>
</tr>
</tbody>
</table>
Feed Quality

- Largest investment tied up in breeders & young pigs
 - Feed quality should be high
 - Minimise risks
 - Avoid risky raw materials
 - Mouldy grains/protein
 - Take insurance measures
 - Mycotoxin binds
 - Mould inhibitors
 - Acidifiers
 - Monitor pigs for feedback
 - Look for obvious signs of mycotoxicosis
 - Agalactia
 - Prolapses
 - Infertility
 - Immune suppression
 - Bruising
 - Decreased litter size
 - Poor piglet viability
 - Swollen vulvas & teats (piglets/gilts)
 - Splay legs
 - Feed refusal
 - Palatability issues

Fibre sources can also be potential reservoirs for mycotoxins.

Don’t forget sub-clinical mycotoxicosis is also possible.
GESTATION (DAY 0 TO DAY 90)

- Objectives
 - To successfully mate sows
 - To maintain a viable pregnancy
 - To maintain acceptable body condition
 - To support optimal litter size
 - Minimise abortions
 - Provide even nutrient supply to piglets
 - Maintain sow health
 - Meet welfare needs of the sow
GESTATION (DAY 0 TO DAY 90)

- **Challenges**
 - Aggression
 - Hunger, stereotypical behaviour
 - Hormones
 - Increased culling
 - Abortion, infertility
 - Elevated stress – effects on piglets
 - Feed contamination
 - Mycotoxins
 - Immune suppression
 - Abortion
 - Foetal development
 - Variation within litter
GESTATION (DAY 0 TO DAY 90)

- Why quality fibre might be useful
 - Depends on housing
 - Indoor vs outdoor
 - Group vs individual
 - Bedding vs solid floors
 - Genotype
 - E.g. Myora breed loves fibre
 - Health status
 - Prebiotic effects
 - Diet composition
 - Fibre balance

- Fibre requirement well known ??
 - Increasing emphasis with shift to group housing
 - Lack of clear definition regarding particle size, water holding capacity, specific fractions etc
HOUSING MANAGEMENT HAS A BIG IMPACT ON THE FIBRE REQUIREMENT
Meeting the sows needs

- To ensure optimal reproductive performance we need to meet more than the gestating sows nutrient requirements.
- Freedom to express normal behaviour.
 - Spontaneous feeding motivation.
 - Restrict feeding: only delivers 40-60% of desired feed intake.
 - Aggression associated with hunger.
 - Need to meet satiety.
Fibre and Satiety

- Satiety believed to be regulated by both physical effects and metabolic effects.
- Feeding time and maceration time have impact on satiety, hence bulky feeds can assist in satiety of sows.
- Fermentable fibre increases production of SCFA/VFA which provides energy for the pig and helps maintain insulin and glucose levels.
Which fibre to use?

- **Does housing include bedding?**
 - **YES** → Provide fermentable fibre to stabilise glucose and insulin
 - **NO** → Offer diet with bulk fibre content
IN-FIELD EXPERIENCE WITH EUBIOTIC LIGNOCELLULOSE

- Limited use at present in Australia
 - Price relative to other fibre sources
 - Many sows housed on straw
 - Use of other additives to promote gut health
 - Feedmill, handling, logistics
 - Nutritionist learning to work with low inclusion fibre

- Potential in Australia
 - North-East Aust struggles to find enough fibre
 - Protein and grain prices are volatile and shift unpredictable
 - Increasing acknowledgement of the role of gut health in efficient, sustainable production
PRE-LACTATION
DAY 90 TILL ENTRY INTO FARROWING HOUSE

- Objectives
 - Meet the increasing nutrient requirement of the foetuses
 - Prepare the sow for subsequent pregnancy
 - Increased specification
 - (e.g. 13.5 MJ, 17% CP, 1% Total Lysine, 5% min CF)
 - Need to consider changing amino acid and vitamin and mineral demands
 - Increased feed intake allowance
 - (e.g. 2.5kg to 3.0kg/sow/day)
 - Prepare the sow for farrowing
 - Energy reserves
 - Readily available energy source
 - Glycogen to avoid farrowing fatigue
 - Faecal consistency
 - Ensure birth passage is not obstructed
 - Cleansing of gut
 - Limit the risk of pathogen transfer from sow to piglet
 - Limit the risk of urinary tract diseases
 - Smooth metabolic transition from gestation to lactation
 - Complex transition
 - Series of biological adaptations
 - Multiple tissues
 - Broad range of nutrients
PRE-LACTATION

- **Challenges**
 - Rapid increase in nutrients for progeny
 - Farrowing fatigue (prolonged parturition)
 - Increased stillbirths
 - Poorer piglet viability
 - Delayed colostrum intake
 - Constipation
 - Risk of assisted births
 - Use of oxytocin
 - Stress, immune suppression, refusal to be suckled
 - Uterine disease
 - Increased risk of MMA/PDS (post-partum dysgalactic syndrome)
PRE-LACTATION
PERFECT OPPORTUNITY FOR QUALITY FIBRE

- Both properties of eubiotic lignocellulose is required
 - Physical benefits of non-fermentable component
 - Assist faecal consistency and limit risk of stillbirths
 - Reduce need for assisted birth, medications
 - Prebiotic benefits
 - Better microflora balance
 - Reduce risk of pathogen transmission
 - Complimentary with acidifiers and probiotic application
 - Benefits of fermentable fibre component
 - Better glucose and insulin regulation in metabolically vulnerable animal
REDUCING THE RISK OF MMA
PERFECT OPPORTUNITY FOR QUALITY FIBRE

(Martineau et al., 2013)
IN-FIELD EXPERIENCE

- Popular place to apply eubiotic fibre either within diet (at 1-2.5%) or within a top dress (100g/sow/day)
- Partial replacement for wheat bran ($500-700/T) top dressed at 1kg/sow/day
- Permits elevated crude fibre level without complicated formulation pressures
- Addressing constipation together with
 - Potassium chloride (2kg/T)
- Addressing gut health together with
 - Probiotics
 - Acidifiers (Benzoic acid)
 - Oligosaccharides
- Addressing metabolic stress/farrow fatigue together with
 - Sugars
 - Chromium
LACTATION
ENTRY INTO FARROWING HOUSE TO WEANING

- Objectives
 - No need for severe restriction pre-farrow
 - Successful feed build-up to maximise milk output (4-6 days)
 - Minimise body weight loss of sow
 - Maximise mammary development and milk letdown
 - Minimise risk of MMA/PDS
 - Maximise weight gain of piglets
 - Minimise disease transfer from sow to piglet
 - Support piglet development
 - Maintain sow uterine health (involution) and fertility
LACTATION

- Challenges
 - Maximising milk output
 - Maximising feed intake
 - Minimising body weight loss
 - Urinary tract infections
 - Constipation
 - MMA/PDS
 - Lameness
 - Neo-natal scours
LACTATION

- Fibre in lactation phase
 - Serves as substrate for hind gut fermentation
 - Aids in regulating faecal consistency (avoids constipation/diarrhoea)
 - Prebiotic fibre promotes growth of beneficial bacteria (lactic acid bacteria) in hind gut
 - Improving gut health, reduces risk of MMA/PDS
 - Health sow gut reduce risk of scours in progeny
INCREASED CONSTIPATION ISSUES

- Changes in sow housing have been related to an increased prevalence of constipation in lactating sows.
- Shift from group housing on straw to confinement (farrowing crates) without bedding appears to be challenge for adapting faecal consistency.
- Feed and water access and diet quality is not a major issue.
- Farmers responses vary
 - Exercising sows at day 4 post-farrowing
 - Moving from farrowing crate to freedom crate
 - Top dress with wheat bran, oat hulls, lucerne
Freedom Crates

- Higher incidence of piglet losses
- Expensive use of space
- Less constipation issues
IN-FIELD EXPERIENCE

- Fairly large focus on fibre
 - Typical minimum CF 4-4.8%
 - Myora farms minimum CF 5-6%

- Increasing number of producers using lactating gilt specification
 - DE 14.5+MJ/kg, Total Lysine 1.2-1.3%, CP 18-20%

- Pushing CF can be a costly exercise
 - Dominant sources
 - Barley, peas, lupins, canola, millrun
 - Others – oat hulls, almond hulls, lucerne
 - Trade-off between energy and fibre
 - Maximum tallow/oil 4%
 - Handling challenge
 - Oil quality and profile important
Eubiotic lignocellulose used
- 0.5-1.0% in feed or formulated into minimum CF
- Or 100g/sow/day in top dress during pre-farrow and acute post farrowing period

Advantages of top dress
- Assumes labour is not a limiting factor
- Can be applied strategically to those sows obviously requiring additional functional fibre
 - Gilts, older parity sows, sows with known farrowing complications etc.
IN-FIELD EXPERIENCE CONT.

- Very large piggery in North Eastern Australia uses eubiotic lignocellulose to achieve minimum CF of 5% in Lactating sow ration

- Formulates in 1.67% eubiotic ligno-cellulose in a 14.0 MJ DE Lact Sow diet

- Observations
 - Feed intake improved
 - Faecal consistency improved
 - Milk output improved
 - Sow maintain good body condition
 - Wean-to-remate interval short (3-5 days)
 - Over 18 months, increase in pigs weaned & weaning weights
CASE STUDY: 500 SOW FARM

- Myora genotype
- Shifted to group sow housing of dry sows on straw
- Increased feeding program of all sows, lead to over condition of sows
- No feed intake issues in lactation
- Offering sows 1kg of wheatbran/probiotic top dress
- Sows not milking well
- High neonatal mortality
- Major constipation issue in Lactating sows
- High piglet variation
Case Study: 500 Sow Farm

- Design and applied a strict feeding program for both dry and lactating sows
- Included eubiotic lignocellulose at 0.5% in gestation to lift the CP to 5% (other fibre sources were barley, peas, canola)
- Stopped offering bran top dress in pre-lactation and early lactation as it was expensive and not working
- Reformulated lactation sow ration with 4.8% min CF which utilised 0.2% eubiotic lignocellulose
- Introduced a pre-lactation top dress 250g/sow/day product which delivers, 100g of eubiotic lignocellulose, sugar, chromium, acidifier, oligosaccharide, & a probiotic
CASE STUDY: 500 SOW FARM

- **Outcomes**
 - Sows behaviour improved
 - Sows milking better
 - Pre-weaning mortality dropped back to normal levels
 - Constipation reduced but not eliminated
 - Feed bill reduced
 - Less need for use of artificial sow
 - Potential to reduce sow numbers but maintain weaning numbers

- **Program aided in smoother transition**
 - Use of top dress containing eubiotic lignocellulose reduced the gastric challenges of transition from gestation to lactation
 - Also aided in the transition from group housing with high access to straw bedding + high fibre diet to confinement + high fibre diet.
WEANING IS A CHALLENGE
Weaning

- Objectives
 - Smooth transition to cereal based diets
 - Support immune and digestive development
 - Limit opportunities for pathogens and disease
 - Maximise feed intake and maintain gut integrity
Weaning

- Challenges
 - Immature digestive and immune system
 - Gut microflora re-establishment
 - Stress, appetite suppression
 - Post-weaning growth check
 - Risk of scours
 - Risk of respiratory disease establishment
Weaners

- **Fibre in young pig diets**
 - Crude fibre historically limited (< 2.5%)
 - NSP has been associated with decreased energy and protein digestibility
 - Weaners lack endogenous enzymes to hydrolysed NSP
 - Associated with risk of diarrohea
 - Equivocal research results
Weaners

- Current research shedding more light
 - Poorly understood the interactive relationships between fibre and other nutrients
 - Recent research suggests there may be a beneficial relationship between fermentable fibre and fermentable protein
 - The risk of protein fermentation is known to increase when the level of easily fermentable fibre are low (Pieper et al., 2012)
 - Eubiotic lignocellulose can act as a form of insurance in young pig diets where crude protein levels are high.
Weaner

- **Jeaurond *et al.*, 2012
 - **Results**
 - Increased gut fill
 - Increased growth of visceral organs
 - Enhanced digestive function
 - Decreased clostridia
 - Decrease production of some biogenic amines
 - Increased production of SCFA (acetate, propionate, butyrate)
In-Field Experience

- One producer who is using eubiotic lignocellulose
- High performance herd, but very fragile
- Scours was a common issue in newly weaned pigs
- Could eliminate scours by reducing CP to 15% in nursery diet, but pigs didn’t grow
- Now runs with a traditional creep diet with 21% protein and 1% eubiotic ligno-cellulose. No scour issues and good growth.
- Use Eubiotic in 1st & 2nd stage
- When scour risk increases, additional eubiotic lignocellulose is added

These field results support the theories presented in the recent research papers published.
Weaner diets in our region

- Blessed for choice of raw materials including animal proteins
- Can take full benefit of the functional properties of animal proteins and other additives
- High CP content very common
- Use of antibiotics
 - Trends changing across some regions
 - Likely to decrease in more regions in future
- Are low protein diets essential to eliminating post-weaning scours? Probably not
 - May be useful in certain situations
 - Improving balance of fermentable fibre in high CP diets wise insurance policy
 - Need to increase our understand and find ultimate balance
Not real excuses

- Nutrient dilution
 - Not a huge issue with 1% inclusion of ligno-cellulose
 - Only costs between $15-20/T
 - Feed intake is most important in newly weaned pigs for maintaining intestinal integrity

- Cost
 - Small in the scheme of things
 - Young pig diets contribute less than 5% to the cost of production (feed costs)
 - Additional cost of adding 1% ligno-cellulose in minor
 - Financial benefits will easily cover the costs
 - E.g. reducing protein related scours, decreased medication costs, improves growth, etc
CONCLUSIONS

- Ligno-cellulose = nutritional aid with exciting potential
- Useful in sows and weaners
- Multifactorial benefits to tackle multifactorial challenges
- More than just a tool to tackle constipation
- Gut health is a strong driver of profitability
- More to learn about the role of fermentable carbohydrates in pig nutrition and the significance of its interaction with other nutrients
- Fermentable fibre as a strong future in weaner nutrition