CONTENTS

NOTE FROM CEO

2 The fittest is not the strongest, but the most adaptable

PARTNER NEWS

3 Agromed appoints Japan Nutrition as distributor for OptiCell® in Japan

PRODUCT UPDATE

4 Protect Vitamin Stability with Animine trace minerals

4 Sparing Vitamin E with antioxidant properties in OptiCell®

TECHNICAL UPDATE

5 Article from Poultry World
 “Betaine and crude protein interaction in broiler feed”

8 Article from International Pig Topics
 “A new choice for using copper in pig feeds - part 1”

EVENTS REVIEW

13 Animine Poultry Workshop, Bangkok, Thailand
 10 October 2017

13 5th Symposium on Poultry Intestinal Health by IHSIG, Bangkok, Thailand
 11-12 October 2017

14 Agromed Key Market Communicator Meeting, Bangkok, Thailand
 28-30 November 2017

EVENTS UPCOMING

14 ILDEX Vietnam
 14-16 March 2018
NOTE FROM CEO, DAVID SAUNDERS

The fittest is not the strongest, but the most adaptable

On behalf of the team at LinkAsia Partners and our partners, I would like to wish you all the best for 2018.

Like 2017, I forecast that we will continue to see increased rate of change in the animal feed market as mandated changes in formulations are introduced for reasons of environment, consumer demand, and health concerns. In addition, modifications to feeding programmes are being implemented as part of global or regional feed manufacturers going global in their marketing considerations.

We are very enthusiastic about the fact that our partners are able to respond to these market demands and challenges that are facing the Asia Pacific market.

One current challenge that is of primary focus today is the supply of vitamins A and E. The shortage of vitamins A and E and the resulting price impact on feeds is significant. As such, vitamins A and E sparing strategies can be considered.

Animine has provided guidance to replace vitamin degrading minerals such as zinc or copper sulphate in premix with HiZox® (ZnO) and CoRouge® (a new form of bioavailable copper) that will reduce susceptive vitamins from degradation.

Another guidance is from Agromed who has noted that the fermentable fibre component of their OptiCell® product contains polyphenols that nutritionists can use to spare some vitamin E in formulations.

The market demands for reduced AGP usage is also opening up large opportunities for solutions provided by our partners. We look forward to helping our partners bring those solutions to the market in 2018.

As a final comment, we are increasingly focused on identifying the needs of the feed manufacturers to offer competitive products that meet new regulations or marketing demands.

2018 is set to be a busy year and the team at LinkAsia Partners is looking forward to the excitement, as we plan to bring our partners’ solutions and products to Asia Pacific that will positively impact your bottom line.

Once again, a happy new year and a successful 2018 ahead to all!

David Saunders
CEO, LinkAsia Partners
PARTNER NEWS

Agromed appoints Japan Nutrition as distributor for OptiCell® in Japan

Agromed Austria, a leading provider of premium natural feed additives, has signed a distribution agreement with Japan Nutrition (JNC), under which they will actively market OptiCell® to the livestock industry in Japan.

“There is significant market potential for the OptiCell® products in Japan and JNC is no doubt a strong local partner for the Japanese market,” commented Helmut Grabherr, CEO of Agromed. “With their established distribution network and excellent reputation in the industry, we believe JNC can help us achieve impressive business growth in the Japanese market.”

Masashi Enokida, Supplement Business Unit in JNC, said, “It is our honour to be the official distributor of OptiCell® in Japan. As a proven and safe source of insoluble fibre with its additional unique fermentable component, OptiCell® will be an excellent product to bring to our discerning customer base who are seeking maximum animal performance for their customers.”

“This strategic partnership between Agromed and JNC will bring the benefits of OptiCell® to the important Japanese livestock feed market segments including petfood, swine, broiler, layer and calf feeds,” said David Saunders, CEO of LinkAsia Partners.

OptiCell® is a natural lignocellulose product which offers a very competitive value proposition with proven performance benefits at a cost comparable to other fibre sources. With a well-balanced combination of fermentable and insoluble fibre contents, OptiCell® is well recognized as a valuable, high density dietary component for modern feed programmes.
PROTECT VITAMIN STABILITY WITH ANIMINE TRACE MINERALS

There are many advantages in favour of non-water soluble compounds, under the condition that they are sufficiently solubilized in the proximal part of the digestive tract for intestinal uptake. On the other hand, copper sulphate is well known for its hygroscopicity while metal sulphates are water soluble compounds and as such they can create negative interactions in the premix and in the gut.

Already in the early 2000’s, it had been shown that metal oxides were less aggressive on vitamin stability when mixed in vitamin/mineral premixes. Since then, manufacturers have improved their vitamin stability so that they are less sensitive to negative effects from other compounds and from storage conditions. However, a recent study showed that vitamin A is 12% less degraded in a typical premix for piglet feeds when mixed with Animine products (potentiated zinc oxide HiZox® and CoRouge®) than with zinc and copper sulphate, even at a mild temperature of 25°C. Attention given to vitamin stability in premixes and feeds is even more critical when vitamins levels are reduced due to extremely high prices or product shortage.

Contact us at info@linkasiapartners.com to learn how Animine products can protect vitamin loss in your premixes and complete feeds.

SPARING VITAMIN E WITH ANTIOXIDANT PROPERTIES IN OPTICELL®

In feeding practice, very high vitamin E dosages are found in the compound feed for all animal species. These are justified by safety margins and benefits such as prevention of inflammation, reduction of stress effects, improvement in fertility etc.. As a matter of fact, the above-mentioned benefits can also be achieved with other antioxidant substances - thus savings in the vitamin E dosage in compound feed is possible. This is a timely consideration given the currently rising price level for vitamin E.

OptiCell® contains natural polyphenols. Polyphenols are proven substitutes for vitamin E in the lab, and in practice, for both technological and physiological benefits. The anti-oxidative capacity of OptiCell® has been tested by ORAC (Oxygen Radical Absorbance Capacity) which measures 67 mg Trolox equivalents (TE)/g OptiCell® corresponding to an amount of about 114 mg of pure vitamin E.

In consideration of the anti-oxidative capacity of OptiCell® which is included in current feed formulations, there is an opportunity to spare some Vitamin E, which is currently in short supply.

Contact us at info@linkasiapartners.com to determine how much Vitamin E you can spare with OptiCell®.
Betaine and crude protein interaction in broiler feed

By Ana Gavrău, Agrana Stärke GmbH

The main physiological functions of betaine (BET) or tri-methyl-glycine widely known are 1) related to its methyl donor role, converting homocysteine into methionine and 2) related to its osmolyte role helping to maintain cell volume which plays a key role especially in animals under heat stress condition. Besides of these effects, when BET donates one methyl group to homocysteine the remaining two methyl groups will form the so called di-methyl-glycine, which will be converted into glycine. So that means that BET also provides indirectly one glycine molecule to the animals as depicted in Figure 1.

Non-essential, but important

Even though glycine is considered a non-essential amino acid (NEAA), it became an important issue in the last years due to the reduction of crude protein (CP) content in diets for monogastric animals. When CP is reduced more than 3%, glycine and serine (a precursor of glycine) levels decrease drastically which can result in lower performance responses (Ospinas-Rojas et al. 2013). Besides protein synthesis, glycine plays also an important role in the energy metabolism (gluconeogenesis) and digestion of fat since it is one of the amino acids present in the bile salts. Moreover glycine has many other functions and that is why Akinde (2014) calls it in his review paper a multitasking amino acid involved in multiple metabolic and functional systems.

One of these functions is to produce uric acid to eliminate the excess of nitrogen from the body via the urine. Glycine and serine but also threonine are also important amino acids in glycosylated proteins in mucins. When the glycine level is low, some essential amino acids such as threonine, which is a precursor of glycine, will have to be converted into glycine meaning that less threonine will be available for production purposes. So therefore the requirement of glycine in low CP diets can be higher and according to Corzo et al. (2009), among all NEAA that have been tested, only glycine could restore performance.

Figure 1 - Simplified scheme of the metabolism of sulphur amino acids, choline and betaine (adapted from Craig, 2004)
TECHNICAL UPDATE
Betaine and crude protein interaction in broiler feed
(continued)

So therefore, birds fed diets low in CP levels (and consequently low in glycine plus serine) might respond positively with the supplementation of BET since the “glycine deficiency” might be counteracted by the glycine supply coming from BET. In that case we talk about diets with normal levels of all essential amino acids, including methionine.

Based on this, a recent trial was carried out in The Netherlands which aimed to determine the effect of BET supplementation in diets with mid-low CP and glycine levels on productive performance of broiler chickens from day 0-21 of age.

Study design
480 1-day-old Ross 308 male broilers were allocated in 4 treatments with 6 replicates of 20 birds (24 pens / 2.2 m² each). Three BET products were added in the starter (day 0-7) and grower diets (day 7-21) (700 and 600 ppm of active BET respectively), containing a mid-low CP and glycine levels as presented in Table 1.

All diets contained normal levels of all essential amino acids. The premix of the starter diet contained 110 ppm choline and no choline was added in the premix used in the grower diet. Diets were pelleted and based on maize, wheat and soybean meal. Results from the starter (day 0-7) and grower (day 7-21) phases as well as from day 0-21 of age are described in Table 2.

Table 1 - Experimental treatments

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Starter phase (day 0-7)</th>
<th>Grower phase (day 7-21)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Crude protein*1 (%)</td>
<td>d.Lys (g/kg)</td>
</tr>
<tr>
<td>1</td>
<td>21.0</td>
<td>12.00</td>
</tr>
<tr>
<td>2</td>
<td>21.0</td>
<td>12.00</td>
</tr>
<tr>
<td>3</td>
<td>21.0</td>
<td>12.00</td>
</tr>
<tr>
<td>4</td>
<td>21.0</td>
<td>12.00</td>
</tr>
</tbody>
</table>

*1 Crude protein level was reduced by around 5-6% by reducing the glycine level of the diets and keeping the essential amino acids at normal levels.

*2 Digestible glycine + serine level.

*3 700 and 600 ppm of active betaine was added in the starter and grower diets, respectively.
Table 2 - Production performance of broilers fed diets with different betaine products and low crude protein levels

<table>
<thead>
<tr>
<th>Betaine product</th>
<th>Item</th>
<th>Control</th>
<th>ActiBeet L</th>
<th>ActiBeet VC</th>
<th>ActiBeet SD</th>
<th>LSD</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Day 0-7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BWG</td>
<td>144</td>
<td>150</td>
<td>149</td>
<td>147</td>
<td>8</td>
<td>0.56</td>
<td></td>
</tr>
<tr>
<td>FI</td>
<td>147</td>
<td>152</td>
<td>148</td>
<td>145</td>
<td>9</td>
<td>0.46</td>
<td></td>
</tr>
<tr>
<td>FCR</td>
<td>1.015</td>
<td>1.014</td>
<td>0.993</td>
<td>0.990</td>
<td>0.028</td>
<td>0.16</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Day 7-21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BWG</td>
<td>877 a</td>
<td>917 b</td>
<td>910 b</td>
<td>912 b</td>
<td>26</td>
<td>0.021</td>
<td></td>
</tr>
<tr>
<td>FI</td>
<td>1109</td>
<td>1138</td>
<td>1131</td>
<td>1121</td>
<td>35</td>
<td>0.36</td>
<td></td>
</tr>
<tr>
<td>FCR</td>
<td>1.266 b</td>
<td>1.241 a</td>
<td>1.243 a</td>
<td>1.230 a</td>
<td>0.019</td>
<td>0.008</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Day 0-21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BWG</td>
<td>1021 a</td>
<td>1066 b</td>
<td>1057 b</td>
<td>1059 b</td>
<td>29</td>
<td>0.023</td>
<td></td>
</tr>
<tr>
<td>FI</td>
<td>1256</td>
<td>1290</td>
<td>1277</td>
<td>1266</td>
<td>36</td>
<td>0.26</td>
<td></td>
</tr>
<tr>
<td>FCR</td>
<td>1.230 b</td>
<td>1.209 a</td>
<td>1.208 a</td>
<td>1.197 a</td>
<td>0.018</td>
<td>0.010</td>
<td></td>
</tr>
</tbody>
</table>

Figure 2 - Body weight gain (BWG) and feed conversion ratio (FCR) of broilers fed diets low in crude protein and glycine levels supplemented with different betaine products.

In the starter phase no significant differences among treatments were observed for the parameters studied. A significant effect for BWG and FCR was observed from day 7-21 and 0-21 of age. Diets containing either ActiBeet L, ActiBeet VC or ActiBeet SD resulted in higher BWG and better FCR compared with the diet without BET (see Figure 2).

Therefore we can conclude that the use of betaine in diets with 1) mid-low CP and in glycine plus serine levels, 2) low levels of choline and 3) with normal levels of essential amino acids, can improve performance of broilers up to day 21 of age.

ActiBeet VC and ActiBeet SD are solely test/pilot products.
TECHNICAL UPDATE
A new choice for using copper in pig feeds - part 1

By Valérie Kromm and Stéphane Durosoy, Animine

When selecting the source of trace minerals, all premix and feed formulators are familiar with mineral oxides. They use or may use zinc oxide, manganese oxide, but why is copper oxide not a popular source of copper in pig nutrition? This review, in two parts, will give some reasons and will explain why the situation recently changed with the authorization of the monovalent form of copper oxide.

More restrictive usage of copper in animal feeds

For decades, the EU authorities have initiated a policy to reduce copper levels in animal diets, and especially in pig feeds. Back in 1982, the Scientific Committee for Animal Nutrition (SCAN) had concluded that maximal level in total dietary copper should not exceed 125 mg/kg in complete feeds for piglets and pigs. In another Opinion from 1983, SCAN already expressed the concern of higher selection of E.coli strains resistant to one antibiotic (chloramphenicol) with higher dietary copper in pig feeds. However, they acknowledged that specific measures could be authorized in some regions where environmental concerns are lower.

Until the early 2000’s, maximum authorized levels took into account animal production densities to assess the risk of copper load due to pig manure spraying. At that time, maximum Cu dietary concentration was 175 mg/kg up to 16 weeks of age for piglets. But regulations differed among European countries for pigs after 17th week of age: in Member States where the mean density of the porcine population was equal to or higher than 175 pigs per 100 ha of utilizable agricultural land, maximum Cu level in the complete feed was 35 mg/kg instead of 100 mg/kg.

The SCAN Opinion from 2003 proposed a compromise to reduce copper burden without affecting performance of farm animals, especially when its usage as growth promotor is well documented. They suggested to reduce the authorized level of 175 mg/kg up to 10 weeks of life instead of 4 months.

Figure 1 summarizes the literature reviewed at that time, showing that the younger the pig, the more significant the growth promoting effect of copper at high supplementation levels.

Figure 1 - Effect of copper level on body weight gain. Left for post weaning phase and right for growing phase (20-50kg)
On the risk of microbial resistance, SCAN communicated that a plasmid from a gut bacteria could contain both a gene encoding resistance to copper and antibiotic resistance genes. Following SCAN Opinion, Regulation 1334/2003 of 25 July 2003 defined new maximum copper levels in pig feeds:

- piglets up to 12 weeks: 170 (total) mg/kg
- other pigs: 25 (total) mg/kg

In 2016, on the request of the European Food Safety Agency (EFSA), two high quality literature reviews were published. Initiated in 2012, an updated report on the influence of copper on antibiotic resistance of gut microbiota in pigs, including piglets, was supervised by Ghent University. Out of a total of 901 references, only 33 were found eligible. Authors concluded that they could not exclude the possibility of a positive correlation between copper supplementation above requirements and development of antibiotic resistance.

Another systematic literature review focused on the effects of copper intake levels in the gut microbiota profile of target animals. Authors concluded that, copper even at low concentrations (<50 mg/kg in complete feed) may affect the microbiota in the gastrointestinal tract. From these reports, EFSA published a 100-page Opinion in 2016 for the revision of maximum contents of dietary copper. The suggestion with the highest impact on animal performance was to reduce the Cu concentration from 170 to 25 mg/kg in piglet feeds, thus suppressing its growth promoting effect. It created a strong reaction from the pig industry in the EU.

Table 1 shows that all piglet feeds which were collected and analysed, reach the highest permitted level, as the effect on weight gain and faecal score is well known.

Regulatory authorities want to restrict safety margins in copper supplementation. They have to choose solutions which maximize animal performance while minimizing the impact on the environment. A new tool (siMMin™) is now available to simulate the impact of copper in the feeding programme of the pig, from weaning until slaughter. It takes into account the growth performance of the animals and Cu dietary concentration in each feed. The software calculates the copper balance, which means that pig farmers can visualize the quantity of excreted copper and how to decrease it. siMMin™ is a user friendly tool, available online at http://animine.eu/mineral-simulator-software/ (see Figure 2).

In combination with the copper level, nutritionists need to select mineral sources which offer the best proofs of bioavailability and animal performance.

<table>
<thead>
<tr>
<th></th>
<th>Cu (mg/kg complete feed)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Median</td>
</tr>
<tr>
<td>Piglets</td>
<td>1,420</td>
</tr>
<tr>
<td>Fattening pigs</td>
<td>2,034</td>
</tr>
<tr>
<td>Sows</td>
<td>546</td>
</tr>
</tbody>
</table>
Back to the 80’s in the USA

Premix and feed manufacturers prefer feed ingredients which offer the best physico-chemical properties.

In the 80’s in the USA, the most popular source of copper used at that time was copper oxide. Copper concentration was close to 80% and this compound was not hygroscopic, which is different from copper sulfate. There was no severe problem of mineral deficiency as supplementation levels were far above animal requirements. However, the situation changed when studies supervised by Dr David Baker at Illinois University revealed that the bioavailability of copper oxide was very poor. This compound then disappeared from formulas, and for decades animal nutritionists have in mind that the oxide form of copper cannot be used as a feed additive. However, when looked at in more detail, it appeared that the compound used by the US industry was a black powder. This means the divalent form of copper oxide: more exactly cupric oxide. All chemists know that copper can have two oxidation states, and that these chemical forms have totally different properties. Figure 3 shows that the cupric and cuprous oxide can easily be recognized based on their respective colour.

Dr Baker also pointed out that, at the opposite of cupric oxide, the monovalent form of copper oxide, showed a high bioavailability in animal studies. With this background, Animine decided to invest in the authorization of cuprous oxide as a feed additive in the European Union.
Authorization of feed grade sources of copper in the EU

The creation of the EFSA and the strengthening of feed legislation has favoured a clearer regulatory situation for the authorization of feed additives.

From the old Regulation 70/524/EEC consolidated over 30 years, procedures concerning feed additives have gained in scientific expertise with the implementation of Regulation 1831/2003.

Until 2010, only two new sources of copper had been authorized: chelated copper of amino acids obtained from hydrolyzed soya protein, later followed by a more restricted definition of the ligand (synthetic glycine). In the last seven years, four new sources of copper have been registered as shown in Figure 4.

In 2014, Animine submitted a dossier to grant the authorization of cuprous oxide in animal nutrition. EFSA published a Positive Opinion in June 2016, later followed by Regulation 2016/2261 in December 2016.

Authorization and definition of CoRouge

Nutritional feed additives (trace minerals, vitamins, amino acids) are authorized as generic approvals, which means that product registration is not exclusively linked to the petitioner. However, an evolution has been noticed with a more restrictive definition in the Annex entry of the Community Register of feed additives. It implies that the active substance is approved under the condition that some physico-chemical criteria are respected.
Such policy has been initiated to secure the level of purity and safety of authorized feed additives. This is exactly what happened for the approval of cuprous oxide, based on the full dossier submitted by Animine.

A formulated compound has been authorized with the following criteria — Preparation of copper(I) oxide with:
- a minimum copper content of 73%
- sodium lignosulfonates between 12% and 17%
- 1% bentonite.
- granulated form with particles < 50 μm: below 10%

This is the definition of CoRouge, exclusively supplied by Animine.

Particle size distribution is an essential feature for a trace mineral compound. It defines solubilisation kinetics in the gastrointestinal tract, thus predicting bioaccessibility of the mineral.

Dust content is also an essential product specification to secure workers’ safety. EU scientific and political authorities had expressed their wish to authorize non-dusty powders in order to reduce the proportion of respirable and inhalable particles in premix and feed factories.

Animine will specify on the Certificate of Analysis of each batch that the proportion of particles below 50 microns is well below 10%.

The official term for this new authorization is copper(I) oxide, instead of cuprous oxide or dicopper oxide. It emphasizes the monovalent state of this chemical form, different from other feed grade sources. In the EU and outside the EU, we should expect, from now on, that the generic term “copper oxide” will not be utilized any more by animal nutritionists, and that the oxidation state will be always specified.

As the copper content is the highest in CoRouge® (see Table 2), it offers many advantages for the feed industry.

Table 2 - Copper concentration in feed grade copper sources in the EU

<table>
<thead>
<tr>
<th>Copper concentration (%)</th>
<th>Copper concentration (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copper chelate of amino acids</td>
<td>10-15</td>
</tr>
<tr>
<td>Copper blysinate</td>
<td>15</td>
</tr>
<tr>
<td>Copper chelate of glycine</td>
<td>15-25</td>
</tr>
<tr>
<td>Copper chelate of hydroxy analogue of methionine</td>
<td>18</td>
</tr>
<tr>
<td>Copper sulphate, pentahydrate</td>
<td>25</td>
</tr>
<tr>
<td>Dicopper chloride trihydroxide</td>
<td>53</td>
</tr>
<tr>
<td>Copper carbonate</td>
<td>55</td>
</tr>
<tr>
<td>Copper(I) oxide (CoRouge)</td>
<td>75</td>
</tr>
</tbody>
</table>

The second part of this article, to be published in a future issue of LinkAsia Connect, will develop the different consequences of this high copper concentration and will review the other specific properties and effects of CoRouge®.
EVENTS REVIEW

Animine Poultry Workshop, Bangkok, Thailand

The Animine Poultry Workshop was held at the Park Plaza Soi 18 Bangkok on 10 October 2017. Distributors in Asia attended this one-day workshop with focus on HiZox and CoRouge applications as well as the current issues in the poultry segment. Dr. Greg Mathis (Director of Southern Poultry Research) and Dr. Brett Lumpkins (Director of Nutrition of Southern Poultry Research) were also present to share his experience and engage attendees in some interesting discussion.

![Image of Animine Poultry Workshop](image)

5th Symposium on Poultry Intestinal Health by IHSIG, Bangkok, Thailand

The Intestinal Health Scientific Interest Group symposium (IHSIG) was held in Bangkok from 11 to 12 October 2017. Necrotic enteritis in the poultry industry was one of the topics presented to the Asian audience. Nutrition and more particularly, mineral nutrition, contribute to this issue. Two findings were presented to discuss the effects of dietary zinc in broilers challenged with *Clostridium perfringens*. One of the findings on a severe challenge was studied by Southern Poultry Research Inc. (SPR) and the other finding relates to a mild challenge carried out in Thailand. It was shown that mortality and performance losses due to necrotic enteritis were mitigated when feeds were supplemented with HiZox®, a potentiated source of zinc oxide from Animine (see Figure 1).

![Image of Symposium](image)

Figure 1 - % NE mortality (source: Southern Poultry Research)

<table>
<thead>
<tr>
<th></th>
<th>ZnSO4 80 ppm</th>
<th>HiZox® 80 ppm</th>
<th>HiZox® 120 ppm</th>
<th>ZnSO4 80 ppm</th>
<th>HiZox® 80 ppm</th>
<th>HiZox® 120 ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>NC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-medicated</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medicated</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
EVENTS REVIEW

Agromed Key Market Communicator Meeting, Bangkok, Thailand

Asia Pacific is a very important market for Agromed where strong partnership with distributors is key to success. During 28 to 30 November 2017, Agromed hosted key partners to its first Key Market Communicator Meeting in Bangkok (Park Plaza Soi 18) where field experiences and ideas were shared. Representatives from Australia, China, Japan, Malaysia, New Zealand, South Korea, Taiwan, Thailand and Vietnam came together to identify new business opportunities and sales strategies in the region.

“Due to the fast changing business landscape in Asia Pacific, it is vital to be in close touch with our distribution partners. This workshop was a great opportunity to share best practices and thereby strengthen the relationships within the region,” said Rainhard Kreindl, Business Manager Asia Pacific, Agromed.

EVENTS UPCOMING

ILDEX Vietnam 2018

Since it’s first edition in 2006, ILDEX Vietnam has been developed to an international platform of meeting key clients and business partners in the livestock industry. This year, the 7th edition of ILDEX Vietnam will be held from March 14-16, 2018 at SECC, Ho Chi Minh City.

Come visit us at booth L17 and discover the latest product offerings from Agromed and Animine. For more information and to pre-register for the show, please visit www.ildex-vietnam.com.